Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples
نویسندگان
چکیده
Marine ecosystems worldwide are under threat with many fish species and populations suffering from human over-exploitation. This is greatly impacting global biodiversity, economy and human health. Intriguingly, marine fish are largely surveyed using selective and invasive methods, which are mostly limited to commercial species, and restricted to particular areas with favourable conditions. Furthermore, misidentification of species represents a major problem. Here, we investigate the potential of using metabarcoding of environmental DNA (eDNA) obtained directly from seawater samples to account for marine fish biodiversity. This eDNA approach has recently been used successfully in freshwater environments, but never in marine settings. We isolate eDNA from ½-litre seawater samples collected in a temperate marine ecosystem in Denmark. Using next-generation DNA sequencing of PCR amplicons, we obtain eDNA from 15 different fish species, including both important consumption species, as well as species rarely or never recorded by conventional monitoring. We also detect eDNA from a rare vagrant species in the area; European pilchard (Sardina pilchardus). Additionally, we detect four bird species. Records in national databases confirmed the occurrence of all detected species. To investigate the efficiency of the eDNA approach, we compared its performance with 9 methods conventionally used in marine fish surveys. Promisingly, eDNA covered the fish diversity better than or equal to any of the applied conventional methods. Our study demonstrates that even small samples of seawater contain eDNA from a wide range of local fish species. Finally, in order to examine the potential dispersal of eDNA in oceans, we performed an experiment addressing eDNA degradation in seawater, which shows that even small (100-bp) eDNA fragments degrades beyond detectability within days. Although further studies are needed to validate the eDNA approach in varying environmental conditions, our findings provide a strong proof-of-concept with great perspectives for future monitoring of marine biodiversity and resources.
منابع مشابه
Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes
Remote polar and deepwater fish faunas are under pressure from ongoing climate change and increasing fishing effort. However, these fish communities are difficult to monitor for logistic and financial reasons. Currently, monitoring of marine fishes largely relies on invasive techniques such as bottom trawling, and on official reporting of global catches, which can be unreliable. Thus, there is ...
متن کاملUsing Environmental DNA to Census Marine Fishes in a Large Mesocosm
The ocean is a soup of its resident species' genetic material, cast off in the forms of metabolic waste, shed skin cells, or damaged tissue. Sampling this environmental DNA (eDNA) is a potentially powerful means of assessing whole biological communities, a significant advance over the manual methods of environmental sampling that have historically dominated marine ecology and related fields. He...
متن کاملSpectrophotometric Determination of Formaldehyde in Seawater Samples after In-situ Derivatization and Dispersive Liquid-Liquid Microextraction
In this paper, a simple dispersive liquid-liquid microextraction for the extraction and pre-concentration of formaldehyde in seawater samples followed with spectrophotometric is proposed. Formaldehyde was derivatized in situ with acetyl acetone in the presence of ammonium acetate in a single step. Then it was collected into a mixture of ethanol (disperser solvent) and chloroform (extracting...
متن کاملEvaluation of genotoxic potential induced by marine cage culture
BACKGROUND AND OBJECTIVES: The eutrophication process is increased by anthropogenic or aquaculture facilities in marine ecosystems. DNA damage biomarkers for fish species detect genotoxic parameters for ecological risk assessment. The aim of the present study was to determine genotoxic potential induced by marine cage culture in Iskenderun Bay on gilthead sea bream (Sparus ...
متن کاملMultiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples.
A multiplex surface plasmon resonance (SPR) biosensor method for the detection of paralytic shellfish poisoning (PSP) toxins, okadaic acid (and analogues) and domoic acid was developed. This method was compared to enzyme-linked immunosorbent assay (ELISA) methods. Seawater samples (n=256) from around Europe were collected by the consortia of an EU project MIcroarrays for the Detection of Toxic ...
متن کامل